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E-mail: stefan@itp.phys.ethz.ch, gaberdiel@itp.phys.ethz.ch and kellerc@itp.phys.ethz.ch

Received 2 October 2006, in final form 10 November 2006
Published 6 December 2006
Online at stacks.iop.org/JPhysA/40/F17

Abstract
The influence of closed string moduli on the D-brane moduli space is studied
from a worldsheet point of view. Whenever a D-brane cannot be adjusted
to an infinitesimal change of the closed string background, the corresponding
exactly marginal bulk operator ceases to be exactly marginal in the presence of
the brane. The bulk perturbation then induces a renormalization group flow on
the boundary whose end-point describes a conformal D-brane of the perturbed
theory. We derive the relevant renormalization group equations in general and
illustrate the phenomenon with a number of examples, in particular the radius
deformation of a free boson on a circle. At the self-dual radius we can give
closed formulae for the induced boundary flows which are exact in the boundary
coupling constants.

PACS numbers: 11.25.Hf, 11.10.Hi

1. Introduction

The problem of how to stabilize the moduli of phenomenologically interesting string
backgrounds is currently one of the central questions in string theory (for recent reviews,
see [1, 2]). Most backgrounds of interest involve D-branes, and thus there are two kinds of
moduli to consider: the D-brane moduli that describe the different D-brane configurations in
a given closed string background and the closed string moduli that characterize this closed
string background. Obviously, these two moduli spaces are not independent of one another;
the moduli space of D-branes depends on the closed string background, and thus on the closed
string moduli. On the other hand, the D-branes ‘back-react’ on the background, and thereby
modify the original closed string background in which they were placed. In order to make
progress with stabilizing all moduli in string theory, it is therefore of some significance to
understand the interplay between these two moduli spaces better.

In this paper we make a small step towards this goal. It is well known that the closed
string moduli space is described, in conformal field theory, by the exactly marginal bulk
perturbations. A necessary condition for a bulk field to be exactly marginal is that it has
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conformal weight (1, 1) and that its three-point self-coupling vanishes [3, 4]. This condition
was derived for conformal field theories without boundary, but in the presence of a D-brane,
the situation changes. Indeed, a marginal bulk operator that is exactly marginal in the bulk
theory may cease to be exactly marginal in the presence of a boundary.

The simplest example where this phenomenon occurs is the theory of a single free boson
compactified on a circle. For this theory the full moduli space of conformal D-branes is known
[5, 6] (see also [7, 8]). It depends in a very discontinuous manner on the radius of the circle,
which is one of the bulk moduli. We always have the usual Dirichlet and Neumann branes, but
if the radius is a rational multiple of the self-dual radius, the moduli space contains in addition
a certain quotient of SU(2). On the other hand, for an irrational multiple of the self-dual radius
the additional part of the moduli space is just a line segment. The bulk operator that changes
the radius is exactly marginal for the bulk theory, but in the presence of certain D-branes it
is not. In particular, it ceases to be exactly marginal if we consider a rational multiple of the
self-dual radius and a D-brane which is neither Dirichlet nor Neumann, but is associated with
a generic group element g of SU(2). If we change the radius infinitesimally, it is generically
not a rational multiple of the self-dual radius any more, and thus the brane associated with g

is no longer conformal.
In order to understand the response of the system to the bulk perturbation, we set up

the renormalization group (RG) equations for bulk and boundary couplings. This can be
done quite generally; we find that whenever certain bulk–boundary coupling constants do
not vanish, the exactly marginal bulk perturbation is not exactly marginal in the presence of a
boundary, but rather induces a non-trivial RG flow on the boundary. In particular, this therefore
gives a criterion for when an exactly marginal bulk deformation is also exactly marginal in the
presence of a boundary.

For the above example of the free boson, the resulting RG flow equations can actually be
studied in quite some detail. We find that upon changing the radius, the resulting flow drives
the brane associated with a generic group element g (that only exists at rational radii) to a
superposition of pure Neumann or Dirichlet branes (that always exist). Whether the end-point
is Dirichlet or Neumann depends on the sign of the perturbation, i.e. on whether the radius is
increased or decreased. At the self-dual radius, the theory is equivalent to the SU(2) WZW
model at level 1, and the analysis can be done very elegantly. In this case, we can actually
give a closed formula for the boundary flow which is exact in the boundary coupling (at first
order in the bulk coupling).

Some of these results can be easily generalized to arbitrary current–current deformations
of WZW models at higher level and higher rank. While we cannot, in general, give an explicit
description of the whole flow any more, we can still describe at least qualitatively the end-point
of the boundary RG flow.

The paper is organized as follows. In section 2 we derive the renormalization group
equations that mix bulk and boundary couplings. In section 3 we apply these techniques to the
free boson at the self-dual radius, and find the exact RG flow. Section 4 discusses how these
results can be generalized to other rational radii as well as to current–current deformations of
WZW models of higher level and rank. We conclude in section 5.

2. The renormalization group equation

In this section we shall analyse the RG flow involving bulk and boundary couplings. Bulk
perturbations by relevant operators for conformal field theories with boundaries have been
considered before in the context of integrable models starting from [9], and were further
developed in [10–12]. In particular, these flows have been studied using (an appropriate
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version of) the thermodynamic Bethe ansatz (see e.g. [13–17]), in terms of the truncated
conformal space approach (see e.g. [15, 16, 18]), and recently by a form factor expansion
[19, 20].

Let S∗ be the action of a conformal field theory on the upper half plane. We denote the
bulk fields by φi and the boundary fields by ψj . Their operator product expansions are of the
form

φi(z)φj (w) = |z − w|hk−hi−hj Cijkφk(w) + · · · , (2.1)

ψi(x)ψj (y) = (x − y)hk−hi−hj Dijkψk(y) + · · · , (2.2)

where Cijk and Dijk are the bulk and boundary OPE coefficients, respectively. (For a
general introduction to conformal field theory, see for example [21].) We are interested
in the perturbation of this theory by bulk and boundary fields:

S = S∗ +
∑

i

λ̃i

∫
φi(z) d2z +

∑
j

µ̃j

∫
ψj(x) dx. (2.3)

Introducing the length scale �, we define dimensionless coupling constants λi and µj by

λ̃i = λi�
hφi

−2, µ̃j = µj�
hψj

−1
. (2.4)

Note that we do not assume here that φi and ψj are marginal operators. If we expand the free
energy in powers of λi and µj , we get terms of the form

λ
l1
1 · · · µm1

1 · · ·
l1! · · · m1! · · ·

∏
i

�(hφi
−2)li

∏
j

�
(hψj

−1)mj

×
∫ 〈

φ1
(
z1

1

)
φ1

(
z1

2

)
. . . φ2

(
z2

1

)
. . . ψ1

(
x1

1

)
. . .

〉 ∏
d2zi

k

∏
dx

j

k . (2.5)

To regularize (2.5), we use an UV cutoff �. More precisely, the prescription is∣∣zi
k − zi′

k′
∣∣ > �,

∣∣xj

k − x
j ′
k′

∣∣ > �, Im z >
�

2
. (2.6)

The parameter � thus appears in (2.5) both explicitly as powers in h and implicitly through the
range of integration.

Following [4] we now consider a change of the scale �, � → (1 + δt)�, and ask how the
coupling constants have to be adjusted so as to leave the free energy unchanged. The explicit
dependence of expression (2.5) on � leads to a change in λi and µj by

λi → (1 + (2 − hφi
)δt)λi,

µj → (1 + (1 − hψj
)δt)µj .

(2.7)

The implicit dependence of (2.5) on � through the UV prescription (2.6) gives rise to
an additional change of the coupling constants. From the first inequality in (2.6), which
controls the UV singularity in the bulk operator product expansion, we obtain the equation
δλk = πCijkλiλj δt [4]. A similar calculation gives δµk = Dijkµiµj δt (see, for example, [22])
for the contribution from the boundary operator product expansion (the second inequality).
Finally, we have to consider the contribution from the third inequality which controls the
singularity that arises when a bulk operator approaches the boundary. When we scale � by
(1 + δt), we change the integration region of a bulk operator by a strip parallel to the real axis
of width �δt/2. This changes expression (2.5) by terms of the form

− λi�
hφi

−2
∫

dx

∫ �/2+�δt/2

�/2
dy〈· · · φi(z) · · ·〉, (2.8)
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where we have written z = x + iy. In order to evaluate this contribution, we use the bulk–
boundary operator product expansion

φi(z, z̄) = (2y)
hψj

−hφi Bijψj (x) + · · · , (2.9)

where Bij is the bulk–boundary OPE coefficient that depends on the boundary condition in
question. The change of the free energy described by (2.8) is then

−λi�
hφi

−2
∫

dx
�δt

2
Bij�

hψj
−hφi 〈· · · ψj(x) · · ·〉 = −1

2
Bij�

hψj
−1

λiδt

∫
dx〈· · · ψj(x) · · ·〉,

(2.10)

which can be absorbed by a shift of δµj = 1
2λiBij δt . Collecting all terms, we thus obtain the

RG equations to lowest order

λ̇k = (2 − hφk
)λk + πCijkλiλj + O(λ3), (2.11)

µ̇k = (1 − hψk
)µk + 1

2Bikλi + Dijkµiµj + O(µλ,µ3, λ2). (2.12)

The flow of the bulk variables λk in (2.11) is independent of the boundary couplings µk on the
disc. The RG flow in the bulk therefore does not depend on the boundary condition whereas
the bulk has a significant influence on the flow of the boundary couplings. Note that the terms
we have written out explicitly are independent of the precise details of the UV cutoff (if the
fields are marginal). Higher order corrections, on the other hand, will depend on the specific
regularization scheme.

Now suppose that φi is an exactly marginal bulk perturbation. The perturbation by φi is
then exactly marginal in the presence of a boundary if the bulk–boundary coupling constants
Bik vanish; this has to be the case for all boundary fields ψk (except for the vacuum) that
are relevant or marginal, i.e. satisfy hψk

� 1. Obviously, switching on the vacuum on the
boundary just leads to a rescaling of the disc amplitude; for irrelevant operators, on the other
hand, the flow is damped by the first term of (2.12), and thus the bulk perturbation only leads
to a small correction of the boundary condition.

The above condition is the analogue of the usual statement about exact marginality: a
necessary condition for a marginal bulk (boundary) operator to be exactly marginal is that the
three point couplings Ciik (Diik) vanish for all marginal or relevant fields φk (ψk), except for
the identity (see, for example, [3, 4, 8]).

If the bulk–boundary coefficient Bik does not vanish for some relevant or marginal
boundary operator ψk , the corresponding boundary coupling µk starts to run, and there is
a non-trivial RG flow on the boundary. The bulk couplings λi are not affected by the flow
(λ̇i = 0), and we can thus interpret it as a pure boundary flow in the marginally deformed
bulk model. From that point of view, it is then clear that the flow must respect the g-theorem
[22, 23]. In particular, the g-function of the resulting brane is smaller than that of the initial
brane. This is in fact readily verified for the examples we are about to study.

3. The free boson theory at the self-dual radius

As an application of these ideas, we now consider the example of the free boson theory at
c = 1. We shall first consider the theory at the critical radius, where it is in fact equivalent to
the WZW model of su(2) at level 1. For this theory all conformal boundary states are known
[24], and are labelled by group elements g ∈ SU(2) (for earlier work, see also [25, 26]).

Suppose that we are considering the boundary condition labelled by g ∈ SU(2), where
we write

g =
(

a b∗

−b a∗

)
, (3.1)
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|a| = 1

(Dirichlet)

|b| = 1

(Neumann)

Figure 1. The moduli space of D-branes on the self-dual circle, SU(2), can be described as a
product of two circles S1 (given by the phases of a and b in (3.1)) fibred over an interval where
|a| runs between 0 and 1, and |a|2 + |b|2 = 1. The ends of the interval where one of the circles
shrinks to zero describe Dirichlet and Neumann branes, respectively. If we start with a generic
boundary condition and increase (decrease) the radius, the boundary condition will flow to a
Dirichlet (Neumann) boundary condition.

and a and b are complex numbers satisfying |a|2 + |b|2 = 1. (Geometrically, SU(2) can be
thought of as a product of two circles; see figure 1.) We shall choose the convention that the
brane labelled by g satisfies the gluing condition1(

gJ α
mg−1 + J̄ α

−m

) ||g〉〉 = 0, (3.2)

where J α are the currents of the WZW model (the corresponding Lie algebra generators will be
denoted by tα). We shall furthermore use the identification that g diagonal (b = 0) describes
a Dirichlet brane on the circle, whose position is given by the phase of a; conversely, if g is
off-diagonal (a = 0), the brane is a Neumann brane, whose Wilson line on the dual circle is
described by the phase of b.

3.1. Changing the radius

We want to consider the bulk perturbation by the field

� = J 3J̄ 3, where t3 = 1√
2

(
1 0
0 −1

)
. (3.3)

This is an exactly marginal bulk perturbation that changes the radius of the underlying circle.
With the above conventions, the perturbation λ� with λ > 0 increases the radius, while
λ < 0 decreases it. At any rate, the perturbation by � breaks the su(2) symmetry down to
u(1). However, in the presence of a boundary, the bulk perturbation is generically not exactly
marginal any more. This is implicit in the results of [5–7] since the set of possible conformal
boundary conditions is much smaller at a generic (irrational) radius relative to the self-dual
case. Here we want to study in detail what happens to a generic boundary condition under this
bulk deformation.

Even before studying the detailed RG equations that we derived in the previous section,
it is not difficult to see that the above deformation is generically not exactly marginal. In
particular, we can consider the perturbed one-point function of the field � in the presence of
the boundary. To first order, this means evaluating the two-point function

λ

∫
H

+
d2z〈(J αJ̄ α)(z)(J αJ̄ α)(w)〉, (3.4)

1 Note that the labelling differs from the one used in [5].
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where the label α = 3 is not summed over. Using the usual doubling trick [27] this amplitude
can be expressed as a chiral four-point function, where we have the fields J α at z and w and
the ‘reflected’ fields J β ≡ gJ αg−1 at z̄ and w̄.

The chiral correlation functions of WZW models at level k can be calculated using the
techniques of [28, 29]. Let tα, α = 1, . . . , dim(g), be the Lie algebra generator (corresponding
to J α) in some representation; we choose the normalization

Tr(tαtβ) = kδαβ. (3.5)

To evaluate 〈J α1(z1) · · · J αn(zn)〉, consider then all permutations ρ ∈ Sn that have no fixed
points; this subset of permutations is denoted by S̃n. Each such ρ can be written as a product
of disjoint cycles

ρ = σ1σ2 . . . σM. (3.6)

To each cycle σ = (i1i2 . . . im), we assign the function

f
αi1 ···αim

σ

(
zi1 , . . . , zim

) = − Tr(tαi1 · · · tαim )(
zi1 − zi2

)(
zi2 − zi3

) · · · (zim − zi1

) , (3.7)

and to each ρ the product fσ1 . . . fσM
. The correlation function is then given by summing over

all permutations without fixed points,

〈J α1(z1) · · · J αn(zn)〉 =
∑
ρ∈S̃n

fρ. (3.8)

In (3.4), ρ is either a 4-cycle or consists of two 2-cycles. In the latter case, we get the
terms

(Tr(tαtβ))2

|z − z̄|2|w − w̄|2 +
(Tr(tαtβ))2

|z − w̄|4 +
Tr(tαtα) Tr(tβ tβ)

|z − w|4 . (3.9)

Integration over the upper half plane gives (divergent) contributions proportional to |w−w̄|−2,
which can be absorbed in the renormalization of J α . The six terms that come from six different
4-cycles give a total contribution of

− Tr([tα, tβ]2)

(z − z̄)(w − w̄)|z − w̄|2 . (3.10)

Set w = i|w| and z = x +iy. The resulting integral over the upper half plane is logarithmically
divergent for y → 0. Introducing an ultraviolet cutoff ε, we get∫

R

dx

∫ ∞

ε

dy
1

2iy 2i|w|
1

x2 + (y + |w|)2
= π

4|w|2 log ε − π

8|w|2 log |w|2 + O(ε). (3.11)

The first term has the right w dependence to be absorbed by a suitable renormalization of J α .
The second term, however, pushes the conformal weight away from (1, 1). Thus, if J α is to
be exactly marginal, the expression Tr([tα, tβ]2) must vanish.

In the case above, Tr([tα, tβ]2) equals

Tr([t3, gt3g−1]2) = −8|a|2|b|2. (3.12)

This only vanishes if either |a| = 0 or |b| = 0; the corresponding boundary conditions are
therefore either pure Dirichlet or pure Neumann boundary conditions. This ties in with the
expectations based on the analysis of the conformal boundary conditions since only pure
Neumann or Dirichlet boundary conditions exist for all values of the radius.

The argument above can also be used in the general case to derive a necessary criterion for
when a bulk deformation is exactly marginal in the presence of a boundary. It is not difficult
to see that it leads to the same criterion as the one given in section 2.
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3.2. The renormalization group analysis

Now we want to analyse what happens if g does not describe a pure Neumann or pure Dirichlet
boundary condition. In particular, we can use the results of section 2 to understand how the
system reacts to the bulk perturbation by λ�.

In order to see how the boundary theory is affected by the perturbation, we have to
compute the bulk–boundary OPE of the perturbing field �. There are no relevant boundary
fields (except the vacuum), and the marginal fields are all given by boundary currents J γ . We
can thus determine the bulk–boundary OPE coefficient B�γ from the two-point function

〈J γ (x)(J 3J̄ 3)(z)〉 = B�γ |z − z̄|−1|x − z|−2, (3.13)

which—employing the general formula (3.8)—leads to

B�γ = −i Tr(tγ [t3, gt3g−1]). (3.14)

We see that the only boundary field that is switched on by the bulk perturbation is the current
J γ whose (Hermitian) Lie algebra generator tγ is proportional to the commutator [t3, gt3g−1].
The normalized tγ is given by

tγ = i√
2

(
0 −eiχ

e−iχ 0

)
with ab∗ = |ab| eiχ . (3.15)

Its relation to the commutator is

−i[t3, gt3g−1] = −i

(
0 −2ab∗

2a∗b 0

)
= Btγ , (3.16)

where the bulk–boundary coefficient B = B�γ is given by

B = −2
√

2|a||b|. (3.17)

The boundary current proportional to tγ modifies the boundary condition g by

δg = itγ g = 1√
2

(−a
|b|
|a| b∗ |a|

|b|
−b

|a|
|b| −a∗ |b|

|a|

)
. (3.18)

This leaves the phases of a and b unmodified, but decreases the modulus of a while increasing
that of b.

Since the operators are marginal, the renormalization group equation to lowest order in
the coupling constants (2.12) is now

µ̇ = 1
2Bλ + O(µλ,µ2, λ2), (3.19)

where µ is the boundary coupling constant of the field J γ . Thus if the radius is increased
(λ > 0), µ becomes negative, and the boundary condition flows to the boundary condition
with b = 0; the resulting brane is then a Dirichlet brane whose position is determined by the
original phase of a. Conversely, if the radius is decreased (λ < 0), µ becomes positive, and
the boundary condition flows to the boundary condition with a = 0. The resulting brane is
then a Neumann brane whose Wilson line is determined by the original value of the phase of
b (see figure 1). This is precisely what one should have expected since for radii larger than
the self-dual radius, only the Dirichlet branes are stable, while for radii less then the self-dual
radius, only Neumann branes are stable.

Actually, the renormalization group flow can be studied in more detail. It follows from
(3.18) that to lowest order in µ

a(µ) = a0 − µa0
|b0|√
2|a0|

+ O(µ2), (3.20)
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where the initial values of a and b have been denoted by a0 and b0, respectively. Since a
depends on the RG parameter only via µ, it thus follows that

ȧ = −µ̇a
|b|√
2|a| = − B

2
√

2

|b|
|a|aλ = |b|2aλ = (1 − |a|2)aλ. (3.21)

If we write |a| = sin ψ , this simplifies to

ψ̇ = sin ψ cos ψλ. (3.22)

Denoting the RG parameter by t, the solution to this differential equation is

tan ψ(t) = tan ψ(0) eλt . (3.23)

Thus for λ > 0 this flows indeed to |a∞| = 1, while for λ < 0 we find |a∞| = 0, as expected.
Given relation (3.20), we can deduce from the solution for a(t) a differential equation for

µ(t) which turns out to be

µ̇ = −
√

2ψ̇. (3.24)

This can be integrated to

µ(t) = −
√

2(ψ(t) − ψ(0)). (3.25)

We can thus determine the path on the group manifold as

g(t) = eiµ(t)tγ g. (3.26)

As a consistency check, one verifies that

lim
t→∞ g(t) =




(
a
|a| 0

0 a∗
|a|

)
if λ > 0

(
0 b∗

|b|
− b

|b| 0

)
if λ < 0.

(3.27)

The path is actually a geodesic on SU(2), relating the point g to the nearest diagonal or
off-diagonal group element. In order to see this, we write

g =
(

sin ψ eiθ cos ψ e−iϕ

− cos ψ eiϕ sin ψ e−iθ

)
, (3.28)

where 0 � ψ � π
2 and 0 � θ, ϕ < 2π . In these variables, the metric on SU(2) is

ds2 = dψ2 + sin2 ψ dθ2 + cos2 ψ dϕ2. (3.29)

The above path in SU(2) is the path with θ and ϕ constant. The variable µ (see equation (3.25))
is simply proportional to ψ − ψ0, which is the arc length parameter along the curve.

4. Generalizations

It is not difficult to generalize the above analysis in a number of different ways.

4.1. The free boson away from criticality

If the radius of the free boson is a rational multiple of the self-dual radius, R = M
N

Rsd, then a
similar analysis applies. At this radius, the conformal boundary states are labelled by elements
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in the quotient space

g ∈ SU(2)/ZM × ZN, (4.1)

where ZM and ZN act by multiplication by roots of unity on a and b, respectively, leaving the
absolute values unaffected [5]. One way to arrive at this construction is to describe the theory
at radius R as a freely acting orbifold by ZM × ZN of the self-dual radius theory [30]. Under
this orbifold action none of the generic SU(2) branes are invariant, and thus the branes of the
orbifold are simply the superpositions of MN branes of the SU(2) level 1 theory.

In particular, it therefore follows that the bulk–boundary OPE coefficients that were
relevant in the above analysis are (up to an MN -dependent factor) unmodified. Therefore, the
same conclusions as above hold: if the radius is increased, a generic brane flows to M equally
spaced Dirichlet branes (this is the interpretation of the branes with b = 0); if the radius is
decreased, a generic brane flows to N Neumann branes whose Wilson lines are equally spaced
on the dual circle (i.e. the branes with a = 0). Since the phases of a and b are unchanged
along the flow, the flow is obviously compatible with the ZM × ZN orbifold operation that
only acts on these phases.

4.2. The analysis at higher level

For SU(2) at level k, the branes that preserve the affine symmetry (up to an inner automorphism
by conjugation by a group element g ∈ SU(2)) are labelled by ||j, g〉〉, where j = 0, 1

2 , 1, . . . , k
2

denotes the different representations of ˆsu(2) at level k (that label the different Cardy branes
[31]), while g describes the automorphism(

gJ α
mg−1 + J̄ α

−m

) ||j, g〉〉 = 0. (4.2)

In addition, there is the identification

||j, g〉〉 = ∣∣∣∣ k
2 − j,−g

〉〉
, (4.3)

where −g ∈ SU(2) is minus the 2 × 2 matrix (3.1).
The field � is an exactly marginal bulk field for any level k [32, 33]. We can thus ask

what happens to the boundary condition ||j, g〉〉 as we perturb the theory by �.
In fact, it is easy to see that the above analysis for level 1 still goes through—the only

place where k enters is in the overall normalization of the bulk–boundary OPE coefficient that
is largely irrelevant for our analysis. Thus if we perturb the theory by the exactly marginal bulk
perturbation J 3J̄ 3, the brane labelled by ||j, g〉〉 flows to ||j, g0〉〉, where g0 is either diagonal or
off-diagonal (depending on the sign of the bulk coupling constant λ), and the relevant phase
of a0 or b0 agrees with the original phase of a or b in g, respectively. In particular, this
prescription therefore respects the identification (4.3). It is also worth noting that it does not
mix different j , and therefore does not produce any additional flows that would reduce the
K-theoretic charge group [34, 35].

The bulk perturbation breaks the SU(2) symmetry down to SU(2)/U(1) × U(1), where
the radius of the U(1) factor is deformed away from the original value of

√
k times the self-dual

radius. The branes corresponding to g0 (to which any brane will flow) describe factorizable
boundary conditions that define a standard Dirichlet or Neumann boundary condition for the
U(1) factor. It is then clear that these branes exist for an arbitrary radius of this U(1) (this has
been analysed previously in [36, 37]). The resulting picture is therefore again in agreement
with expectations.

For large values of the level k, we can give yet another geometric interpretation. The
current–current deformation of the WZW model can be understood as deforming the metric,
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the B-field and the dilaton on the group. In particular, once the WZW model is deformed, the
dilaton φ is not constant any more, but has the dependence (see [33, 36, 38])

e−2φ(ψ) = 1 − (1 − R2) cos2 ψ

R
, (4.4)

where R denotes the deformed radius of the embedded U(1) (R = 1 being the WZW case).
If we start with a D0-brane on the group at position g, then after the deformation it will flow
along the gradient of the dilaton to a maximum, such that its mass, which is proportional to
1
gs

∼ e−φ , is minimal. Minimization of (4.4) leads to the conditions

(1 − R2) sin 2ψ = 0, (1 − R2) cos 2ψ > 0. (4.5)

When the radius is increased (R > 1, corresponding to λ > 0), we find ψ = π
2 , i.e. |a| = 1.

For R < 1 we obtain on the other hand ψ = 0 (|b| = 1). This is thus in nice agreement with
our analysis of section 3.

4.3. Other bulk perturbations

So far we have only considered bulk perturbations by J 3J̄ 3, but it should be clear how to
generalize this to the case where the perturbing bulk field is J αJ̄ ᾱ . In fact, if we write
tα = ht3h−1 and t ᾱ = h̄t3h̄−1, then the above analysis goes through provided we replace g

by ĝ = h−1gh̄. Indeed, the relevant tγ is in this case

itγ ∝ [tα, gt ᾱg−1] = h[t3, ĝt3ĝ−1]h−1, (4.6)

and thus

δg = δ(hĝh̄−1) = hδĝh̄−1. (4.7)

At level 1, the perturbation by J αJ̄ ᾱ can again be interpreted as changing the radius of a circle.
Its embedding in SU(2) is described as

θ �→ h eiθt3
h̄−1. (4.8)

4.4. Higher rank groups

Much of the discussion for SU(2) carries over to Lie groups of higher rank, though in general
it is not possible to give a closed expression for the integrated flow any more. For simplicity
we shall restrict the following discussion to the Lie groups G = SU(n).

Let us consider a D-brane that is characterized by the gluing condition (3.2) for a given
g ∈ SU(n). As in section 3.1, the perturbation J αJ̄ α with α fixed and tα ∈ su(n) is exactly
marginal in the bulk [32, 33], but leads to a flow of the gluing parameter g as

ġ = λ

2
[tα, tβ]g, (4.9)

where tβ = gtαg−1. This flow can be interpreted as a gradient flow,

ġ = −∇V (g) with potential V (g) = −λ

2
Tr(tαgtαg−1). (4.10)

To see this, we first recall that the gradient is defined by

d

ds
V (g + istg)

∣∣∣∣
s=0

= −Tr(∇V (g)g−1it), (4.11)

where t is an arbitrary vector in the Lie algebra. Here, the minus sign appears because the
trace is negative definite on the Lie algebra; the factors of g map it to a tangent vector itg at
g, and the tangent vector ∇V (g) to an element of the Lie algebra, ∇V (g)g−1. Evaluating the
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directional derivative, we find
d

ds
V (g + istg)

∣∣∣∣
s=0

= −λ

2
Tr(tαitgtαg−1 − tαgtαg−1it)

= λ

2
Tr([tα, gtαg−1]g(g−1it)). (4.12)

Comparing this with (4.11), we deduce that

∇V (g) = −λ

2
[tα, gtαg−1]g, (4.13)

which hence implies that (4.10) reproduces the flow equation (4.9).
In contradistinction to the SU(2) case, however, this flow is generically not a geodesic

flow. The change of the direction of the RG flow is
d

dt
[tα, tβ] ∝ [tα, [tβ, [tα, tβ]]], (4.14)

which is in general not proportional to [tα, tβ]. Thus, the tangent to the flow is not parallel
to a fixed direction in the Lie algebra; this makes it hard to integrate the complete flow in the
generic case.

We can nevertheless describe at least qualitatively the end point of the flow. To this end,
it is sufficient to understand the fixed points of the flow and their stability properties.

A boundary condition corresponding to the gluing condition g is a fixed point of the flow
if [tα, tβ] = 0. This is only the case if the matrices tα and tβ have common eigenspaces.
Assume that tα is generic, i.e. that all its eigenvalues τi are distinct and all eigenspaces Rvi are
one dimensional. Then [tα, tβ] = 0 if and only if g permutes the n eigenspaces and multiplies
each one by a phase ri . This means that there are n! discrete choices for g, each coming with
n − 1 continuous degrees of freedom (note that det g = ±∏

i ri = 1).
This has a simple physical interpretation if the level of the WZW model is 1. Then the

theory is equivalent to a compactification on a torus described by the momentum lattice

{(pL, pR) ∈ �W ⊕ �W,pL − pR ∈ �R}, (4.15)

where �W and �R are the weight and root lattice of su(n), respectively. Without loss of
generality, we may choose our Cartan subalgebra such that it contains tα . A group element
g ∈ SU(n) that permutes the eigenvectors vi acts by conjugation on the root lattice and hence
corresponds to some element wg of the Weyl group. The gluing condition (3.2) for the currents
J β then translates into the condition

wgpL = pR (4.16)

for the momenta. This is the gluing condition for the standard torus branes that couple to all
momenta pL (as wgpL − pL ∈ �R). The dimension of the brane is given by the number of
eigenvalues of wg that are not equal to 1 (this is the absolute length of wg). The phases of g

then correspond to the positions and Wilson lines of the brane.
These standard torus D-branes are the ones that are unaffected by a perturbation of the

size of the torus and they correspond to the fixed points g of the flow equation (4.9).
In order to understand where a generic brane flows to, it is furthermore important to

understand the stability of the fixed points. Suppose we start with a boundary condition that
is very close to one of the fixed points; if the brane is driven back to the fixed point it is stable,
if it flows away (to some other fixed point) it is unstable.

To simplify the discussion, we shall work in the eigenbasis {vi} of tα . Using its spectral
decomposition tα = ∑

τiPi , we can rewrite (4.9) as

ġ = λ

2

∑
i,j

τiτj (PigPj − gPig
−1Pjg). (4.17)
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To check the stability of a fixed point g = S, consider the ansatz

gij (t) = Sij + εhij (t). (4.18)

Here, S is the matrix of a fixed point given by a permutation σ and phases ri , i.e.

S : vi �→ rivσ(i). (4.19)

In particular, this means that

SPiS
−1 = Pσ(i). (4.20)

Evaluating (4.17) to first order yields

ḣij = λ

2
(τi − τσ(j))(τj − τσ−1(i))hij . (4.21)

We easily see that ḣij = 0 for i = σ(j); these are the n − 1 flat directions we have identified
before. In order for g = S to be stable, all other components hlm must have negative
eigenvalues. Without loss of generality, we may assume that the τi are ordered,

τ1 < τ2 < · · · < τn. (4.22)

Consider then the coefficient for i = σ(p). If λ > 0, the condition is

j < p ⇒ σ(j) < σ(p), (4.23)

i.e. σ grows monotonically, which is only the case for σ = id. For λ < 0, σ must be a
decreasing function, i.e.

σ : i �→ n − i. (4.24)

We thus obtain a very simple result: if λ > 0, g flows to the identity component; if λ < 0, the
D-brane flows to the component where g inverts the order of the eigenvalues of tα .

In the torus picture (for k = 1), the identity component corresponds to the D0-branes.
This is what we expect: if the size increases (λ > 0) beyond the self-dual radius, the D0-branes
are the lightest branes and a generic brane will flow to one of them. If the size decreases
(λ < 0), the physical intuition is less clear, because there is a B-field on the torus which
complicates things. The torus branes which are described by the inverse ordering of the
eigenvectors correspond to the longest element w0 in the Weyl group2. Its absolute length
(minimal number of reflections or minimal number of transpositions) is given by � n−1

2 � which
gives us the dimension of the D-brane on the torus. In the example of SU(3), the branes which
are stable under a perturbation with λ < 0 are thus D1-branes.

So far we have restricted our discussion to a generic perturbation tα . It is clear that there
are special directions tα for which the bulk perturbation breaks less symmetry. If two or more
eigenvalues of tα coincide, one observes from (4.21) that there are more directions hij which
are unaffected by the flow (ḣij = 0), i.e. the dimensions of the moduli spaces of fixed points
can grow beyond n − 1.

For other bulk perturbations J αJ̄ ᾱ with t ᾱ �= tα , the discussion is very similar to the one
above. Assume that t ᾱ = h̄

(∑
τ̄iPi

)
h̄−1 with eigenvalues τ̄1 < · · · < τ̄n. Then the above

arguments apply if we replace g by ĝ = gh̄. If the level is 1, we again have an interpretation
in terms of a torus in SU(n) which is obtained from the Cartan torus by translation by h̄−1

from the right.
For large values of the level k, we can—as in the SU(2) case in section 4.2—interpret the

perturbation as a deformation of the metric, the B-field and the dilaton on the group (see [39]).
One would then expect that the group values to which the branes flow are again characterized
by the property that they maximise the dilaton; it would be interesting to check this directly.

2 Here ‘long’ refers to the standard length which is the minimal number of reflections at simple roots needed to write
w0, or, in terms of permutations, the minimal number of transpositions of neighbouring elements.
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5. Conclusions

In this paper we have studied the interplay between open and closed string moduli on the disc.
In particular, we have shown that an exactly marginal closed string perturbation (that describes
the change of a closed string modulus) may cease to be exactly marginal in the presence of
a D-brane. If this is the case, the bulk operator induces a RG flow on the boundary. The
end-point of the RG flow is a D-brane that is conformal in the perturbed bulk theory. We have
illustrated this phenomenon with the example of the free boson theory at c = 1, and with
current–current deformations of WZW models.

It would be interesting to analyse similar phenomena in a time-dependent string theory
context. Suppose, for example, that we deform the bulk theory of some D-brane string
background infinitesimally so that the D-brane is no longer conformal. One would then expect
that the background evolves in a time-dependent process towards a configuration in which the
D-brane is again conformal. Neglecting closed string radiation, time dependence is essentially
incorporated by substituting the first-order derivatives in the RG equations by second-order
time derivatives (see e.g. [40, 41]). Since the models we considered are compact, unlike the
situation studied in [41] there is no open string radiation that could escape to infinity. In
particular, there is therefore no dissipation and the model will undergo eternal oscillations.
It would be interesting to study the effects of closed string radiation in the examples we
considered above. In particular, by suitably controlling the bulk deformation λ, the process
can be made arbitrarily slow.

Our analysis was originally motivated by trying to understand the interpretation of the
obstruction of [42]. There N = 2 supersymmetric B-type D-branes on the orbifold line T 4/Z4

of K3 were studied using matrix factorization and conformal field theory techniques. It was
found that a certain B-type brane (namely the brane that stretches diagonally across the two
T 2s that make up T 4) is obstructed against changing the relative radii of the two T 2s; this
could be seen both from the matrix factorization point of view, as well as in conformal field
theory.

The analysis above suggests that upon changing the relative radii, the brane simply
readjusts its angle so that it continues to stretch diagonally across the two tori. From the
point of view of conformal field theory, there is no obstruction in this. The obstruction that
was observed in the matrix factorization analysis only means that the resulting brane breaks
the B-type supersymmetry, as could also be seen in conformal field theory [42]. It would be
interesting to understand more directly when such a phenomenon may happen in conformal
field theory; the relevant condition will probably be related to the charge constraint of [42].

At least in this example the obstruction therefore does not ‘lift’ the corresponding bulk
modulus. While we have only analysed the disc amplitude, we do not expect any higher order
corrections since the brane remains supersymmetric (albeit not B-type supersymmetric). In
general, however, one would expect that the backreaction of the brane on the background
geometry could lift bulk moduli. This backreaction is however not visible at the disc level,
and one will have to analyse at least the annulus amplitudes in order to study it in conformal
field theory. It would be very interesting to find a simple example where this can be analysed
explicitly.
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